73 research outputs found

    Flipping the EFL classroom in a secondary education setting: Students’ perceptions and academic performance

    Get PDF
    Recientemente se ha popularizado un nuevo modelo de enseñanza denominado «flipped classroom» o clase invertida. Este nuevo modelo se basa en invertir la secuenciación de la clase desplazando la lección magistral fuera del aula por medio del visionado de videos en los que se explican los contenidos antes de acudir a clase. De esta manera el tiempo de clase se usa para realizar actividades más centradas en los alumnos que los involucren y que enfaticen el aprendizaje activo. A pesar de su popularidad, la investigación sobre la implementación de este modelo se ha centrado en campos basados en lecciones magistrales como ciencias, tecnología o matemáticas, y en contextos universitarios. Nuestro estudio intenta contribuir a la investigación sobre este modelo aplicándolo en una clase de inglés como lengua extranjera (ILE) en Educación Secundaria. Los resultados obtenidos mostraron mejoras en conocimientos y percepciones positivas hacia su uso para esta asignatura y en este contexto.The flipped classroom teaching model has gained a lot of popularity lately. The core idea of this new approach is to switch the class sequence moving direct instruction out of the classroom by making students watch videos that explain the content before coming to class. This way in-class time is freed up to implement student-centred activities that engage students and enhance active learning. Despite its popularity, studies regarding the implementation of the flipped classroom focus mainly on fields that are strongly based on lecturing, such as science, technology and mathematics, and on university settings. This case study aims to contribute to research on the implementation of the flipped classroom by extending it to an EFL classroom in a Secondary Education setting. Results obtained in pre and post-tests and in questionnaires showed that the flipped classroom improved students’ academic performance and this new teaching model was perceived positively by students

    2005-2017 Ozone trends and potential benefits of local measures as deduced from air quality measurements in the north of the Barcelona metropolitan area

    Get PDF
    We analyzed 2005–2017 data sets on ozone (O3) concentrations in an area (the Vic Plain) frequently affected by the atmospheric plume northward transport of the Barcelona metropolitan area (BMA), the atmospheric basin of Spain recording the highest number of exceedances of the hourly O3 information threshold (180¿µg¿m-3). We aimed at evaluating the potential benefits of implementing local-BMA short-term measures to abate emissions of precursors. To this end, we analyzed in detail spatial and time variations of concentration of O3 and nitrogen oxides (NO and NO2, including OMI remote sensing data for the latter). Subsequently, a sensitivity analysis is done with the air quality (AQ) data to evaluate potential O3 reductions in the north of the BMA on Sundays compared with weekdays as a consequence of the reduction in regional emissions of precursors. The results showed a generalized decreasing trend for regional background O3 as well as the well-known increase in urban O3 and higher urban NO decreasing slopes compared with those of NO2. The most intensive O3 episodes in the Vic Plain are caused by (i) a relatively high regional background O3 (due to a mix of continental, hemispheric–tropospheric and stratospheric contributions); by (ii) intensive surface fumigation from mid-troposphere high O3 upper layers arising from the concatenation of the vertical recirculation of air masses; but also by (iii) an important O3 contribution from the northward transport/channeling of the pollution plume from the BMA. The high relevance of the local-daily O3 contribution during the most intense pollution episodes is clearly supported by the O3 (surface concentration) and NO2 (OMI data) data analysis. A maximum decrease potential (by applying short-term measures to abate emissions of O3 precursors) of 49¿µg¿O3¿m-3 (32¿%) of the average diurnal concentrations was determined. Structurally implemented measures, instead of episodically, could result in important additional O3 decreases because not only the local O3 coming from the BMA plume would be reduced, but also the recirculated O3 and thus the intensity of O3 fumigation in the plain. Therefore, it is highly probable that both structural and episodic measures to abate NOx and volatile organic compound (VOC) emissions in the BMA would result in evident reductions of O3 in the Vic PlainPeer ReviewedPostprint (author's final draft

    Organic and Elemental Carbon in the Urban Background in an Eastern Mediterranean City

    Get PDF
    The Mediterranean region is an important area for air pollution as it is the crossroads between three continents; therefore, the concentrations of atmospheric aerosol particles are influenced by emissions from Africa, Asia, and Europe. Here we concentrate on an eleven-month time series of the ambient concentration of organic carbon (OC) and elemental carbon (EC) between May 2018–March 2019 in Amman, Jordan. Such a dataset is unique in Jordan. The results show that the OC and EC annual mean concentrations in PM2.5 samples were 5.9 ± 2.8 µg m–3 and 1.7 ± 1.1 µg m–3, respectively. It was found that the majority of OC and EC concentrations were within the fine particle fraction (PM2.5). During sand and dust storm (SDS) episodes OC and EC concentrations were higher than the annual means; the mean values during these periods were about 9.6 ± 3.5 µg m–3 and 2.5 ± 1.2 µg m–3 in the PM2.5 samples. Based on this, the SDS episodes were identified to be responsible for an increased carbonaceous aerosol content as well as PM2.5 and PM10 content, which may have direct implications on human health. This study encourages us to perform more extensive measurements during a longer time period and to include an advanced chemical and physical characterization for urban aerosols in the urban atmosphere of Amman, which can be representative of other urban areas in the region

    Organic and Elemental Carbon in the Urban Background in an Eastern Mediterranean City

    Get PDF
    The Mediterranean region is an important area for air pollution as it is the crossroads between three continents; therefore, the concentrations of atmospheric aerosol particles are influenced by emissions from Africa, Asia, and Europe. Here we concentrate on an eleven-month time series of the ambient concentration of organic carbon (OC) and elemental carbon (EC) between May 2018– March 2019 in Amman, Jordan. Such a dataset is unique in Jordan. The results show that the OC and EC annual mean concentrations in PM2.5 samples were 5.9 ± 2.8 µg m–3 and 1.7 ± 1.1 µg m–3, respectively. It was found that the majority of OC and EC concentrations were within the fine particle fraction (PM2.5). During sand and dust storm (SDS) episodes OC and EC concentrations were higher than the annual means; the mean values during these periods were about 9.6 ± 3.5 µg m–3 and 2.5 ± 1.2 µg m–3 in the PM2.5 samples. Based on this, the SDS episodes were identified to be responsible for an increased carbonaceous aerosol content as well as PM2.5 and PM10 content, which may have direct implications on human health. This study encourages us to perform more extensive measurements during a longer time period and to include an advanced chemical and physical characterization for urban aerosols in the urban atmosphere of Amman, which can be representative of other urban areas in the region

    Organic and Elemental Carbon in the Urban Background in an Eastern Mediterranean City

    Get PDF
    The Mediterranean region is an important area for air pollution as it is the crossroads between three continents; therefore, the concentrations of atmospheric aerosol particles are influenced by emissions from Africa, Asia, and Europe. Here we concentrate on an eleven-month time series of the ambient concentration of organic carbon (OC) and elemental carbon (EC) between May 2018–March 2019 in Amman, Jordan. Such a dataset is unique in Jordan. The results show that the OC and EC annual mean concentrations in PM2.5 samples were 5.9 ± 2.8 µg m–3 and 1.7 ± 1.1 µg m–3, respectively. It was found that the majority of OC and EC concentrations were within the fine particle fraction (PM2.5). During sand and dust storm (SDS) episodes OC and EC concentrations were higher than the annual means; the mean values during these periods were about 9.6 ± 3.5 µg m–3 and 2.5 ± 1.2 µg m–3 in the PM2.5 samples. Based on this, the SDS episodes were identified to be responsible for an increased carbonaceous aerosol content as well as PM2.5 and PM10 content, which may have direct implications on human health. This study encourages us to perform more extensive measurements during a longer time period and to include an advanced chemical and physical characterization for urban aerosols in the urban atmosphere of Amman, which can be representative of other urban areas in the region

    Variation of PM2.5 concentrations in relation to street washing activities

    Get PDF
    Several studies conducted in urban areas have pointed out that road dust resuspension contributes significantly to PM concentration levels. Street washing is one of the methods proposed to reduce resuspended road dust contributions to ambient PM concentrations. As resuspended particles are mainly found in the coarse mode, published studies investigating the effects of street washing have focused on PM10 size fraction. As the PM2.5 mass fraction of particles originating from mechanical abrasion processes may still be significant we conducted a study in order to evaluate the effects of street washing on the mitigation of resuspension of fine particles. The PM2.5 mass concentration data were examined and integrated with the occurrence of street washing activities. In addition, the effect of the meteorological variability, traffic flow and street washing activities, on ambient PM2.5 levels was valuated by means of a multivariate regression model. The results revealed that traffic low is the most important factor that controls PM2.5 hourly concentrations while street washing activities did not influence fine particle mass levels

    Estimation of the road dust contribution in the urban aerosol

    Get PDF
    The urban area of Madrid (Spain), as in many other cities worldwide, is characterized by poor ambient air quality. Previous studies in the area have pointed out traffic as the main source of fine particles, while dust resuspension was found to be responsible for elevated levels of coarse particles (Querol et al, 2004). Street washing is one of the methods that might reduce the dust resuspension. The aim of this study was to quantify the contribution of road dust to particulate matter and evaluate the effects of street washing on the strength of resuspensio

    Particulate Matter Concentrations in a Middle Eastern City – An Insight to Sand and Dust Storm Episodes

    Get PDF
    In this study, the particulate matter mass (PM10 and PM2.5) concentrations we measured during May 2018–March 2019 in an urban atmosphere of Amman, Jordan. The results showed that the annual mean PM10 concentration was 64 ± 39 µg m–3 and the PM2.5/PM10 ratio was 0.8 ± 0.2. According to the Jordanian Air Quality standards (JS-1140/2006), the observed PM10 annual mean value was below the limit value but that of the PM2.5 was three times higher than the corresponding limit value. However, both exceeded the World Health Organization (WHO) air quality guideline values. In a larger perspective, the annual mean PM10 concentrations in Jordan were lower than what was reported in other cities in the Middle East but were higher when compared to other Mediterranean cities. During the measurement period, Jordan was affected by Sand and Dust Storm (SDS) episodes on 14 days. The source origins of these dust outbreaks were traced back to North Africa, the Arabian Peninsula, and the Levant. The 24-hour PM10 concentrations during these SDS episodes ranged between 108 and 188 µg m–3, which was about 3–6 times higher than the mean values during clean conditions (~33 µg m–3).Peer reviewe

    Insights into the single-particle composition, size, mixing state, and aspect ratio of freshly emitted mineral dust from field measurements in the Moroccan Sahara using electron microscopy

    Get PDF
    The chemical and morphological properties of mineral dust aerosols emitted by wind erosion from arid and semi-arid regions influence climate, ocean, and land ecosystems; air quality; and multiple socio-economic sectors. However, there is an incomplete understanding of the emitted dust particle size distribution (PSD) in terms of its constituent minerals that typically result from the fragmentation of soil aggregates during wind erosion. The emitted dust PSD affects the duration of particle transport and thus each mineral\u27s global distribution, along with its specific effect upon climate. This lack of understanding is largely due to the scarcity of relevant in situ measurements in dust sources. To advance our understanding of the physicochemical properties of the emitted dust PSD, we present insights into the elemental composition and morphology of individual dust particles collected during the FRontiers in dust minerAloGical coMposition and its Effects upoN climaTe (FRAGMENT) field campaign in the Moroccan Sahara in September 2019. We analyzed more than 300 000 freshly emitted individual particles by performing offline analysis in the laboratory using scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectrometry (EDX). Eight major particle-type classes were identified with clay minerals making up the majority of the analyzed particles both by number and mass, followed by quartz, whereas carbonates and feldspar contributed to a lesser extent. We provide an exhaustive analysis of the PSD and potential mixing state of different particle types, focusing largely on iron-rich (Fe oxide-hydroxides) and feldspar particles, which are key to the effects of dust upon radiation and clouds, respectively. Nearly pure or externally mixed Fe oxide-hydroxides are present mostly in diameters smaller than 2 µm, with the highest fraction below 1 µm at about 3.75 % abundance by mass. Fe oxide-hydroxides tend to be increasingly internally mixed with other minerals, especially clays, as particle size increases; i.e., the volume fraction of Fe oxide-hydroxides in aggregates decreases with particle size. Pure (externally mixed) feldspar represented 3.2 % of all the particles by mass, of which we estimated about a 10th to be K-feldspar. The externally mixed total feldspar and K-feldspar abundances are relatively invariant with particle size, in contrast to the increasing abundance of feldspar-like (internally mixed) aggregates with particle size with mass fractions ranging from 5 % to 18 %. We also found that overall the median aspect ratio is rather constant across particle size and mineral groups, although we obtain slightly higher aspect ratios for internally mixed particles. The detailed information on the composition of freshly emitted individual dust particles and quantitative analysis of their mixing state presented here can be used to constrain climate models including mineral species in their representation of the dust cycle
    • …
    corecore